Large Power Transformer Fault Diagnosis and Prognostic Based on DBNC and D-S Evidence Theory

نویسندگان

  • Gang Li
  • Changhai Yu
  • Hui Fan
  • Shuguo Gao
  • Yu Song
  • Yunpeng Liu
چکیده

Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognition and Location of Power Transformer Turn to Turn Fault by Analysis of Winding Imposed Forces

Turn to turn fault is one of the major internal failures in the power transformers that if it is not quickly detected, can be extended and led to a complete transformer breakdown. So, the diagnosis and location of the turn to turn fault of the power transformer, as one of the most important equipment in the power system, is the main objective of this paper. For this purpose, a detailed model of...

متن کامل

Power Auto-transformer Mechanical Faults Diagnosis ‎Using Finite Element based FRA

Frequency response analysis (FRA) is a sensitive ‎method established for testing the mechanical integrity of ‎transformers. However, interpretation of FRA signature still ‎needs expert opinions and there is no FRA interpretation code ‎generally accepted. Various mechanical faults with different ‎extents on power transformers are required to aid FRA ‎interpretation. To address this challenge, in...

متن کامل

Discrimination of Inrush from Fault Currents in Power Transformers Based on Equivalent Instantaneous Inductance Technique Coupled with Finite Element Method

The phenomenon of magnetizing inrush is a transient condition, which occurs primarily when a transformer is energized. The magnitude of inrush current may be as high as ten times or more times of transformer rated current that causes malfunction of protection system. So, for safe running of a transformer, it is necessary to distinguish inrush current from fault currents. In this paper, an equiv...

متن کامل

A New Restricted Earth Fault Relay Based on Artificial Intelligence

The restricted earth fault (REF) relay is a type of differential protection which is used for detection of internal ground faults of power transformers. But, during external faults and transformer energization conditions, the probability of current transformer (CT) saturation increases. Thus, the spurious differential current due to CT saturation, can lead to REF relay maloperation. In this pap...

متن کامل

Designing of a New Transformer Ground Differential Relay Based on Probabilistic Neural Network

Low- impedance transformer ground differential relay is a part of power transformer protection system that is employed for detecting the internal earth faults. This is a fast and sensitive relay, but during some external faults and inrush current conditions, may be exposed to maloperation due to current transformer (CT) saturation. In this paper, a new intelligent transformer ground differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017